MATHEMATICS 6 QUIZ - WEEK 6
MATHEMATICS 6 QUIZ - WEEK 6
Direction: Copy the lettter and the text of the correct answer.
1) If the denominators of the fractions you are going
to add are the same, what should you do next?
a) Add the numerators
b) Find a common denominator
c) Subtract the denominators
d) Convert the fractions to decimals
2) If the denominators of the fractions you are going to add are not the
same, what should you do first?
a) Add the numerators
b) Find a common denominator
c) Subtract the denominators
d) Convert the fractions to decimals
3) In multiplying fractions, we simply multiply the ____________ and
______________ and reduce the answer to the lowest term.
a) denominators, denominators
b) numerators, denominators
c) numerators, numerators
d) denominators, numerators
4) Which of the following is not true about
subtracting fractions?
a) The denominators must be the same
b) Subtract the numerators
c) The result can be larger than the
original fractions
d) The denominators stay the same
5) All of the following statements are true except:
a) Multiplying a fraction by its reciprocal
equals 1
b) To add fractions, you need a common
denominator
c) When multiplying decimals, count the
total decimal places
d) Dividing by a fraction is the same as
multiplying by its reciprocal
6) Which of the following statements indicate the
correct order of dividing fractions?
a) Multiply the reciprocals
b) Subtract the numerators
c) Add the denominators
d) Multiply the denominators
7) What is a reciprocal of ½?
a) 1/1
b) 2/1
c) 1/2
d) 0/2
8) Why is it necessary to learn how to compute
decimals?
a) To confuse students
b) To make math more complicated
c) To understand money and measurements
d) To solve problems faster
9) When dividing fractions, do we also perform
multiplication?
a) Yes
b) No
c) Sometimes
d) Only with whole numbers
10) Hannah has a Php 20.35 allowance per day. If her father gives her
the same amount every day for 5 days, how much will she earn? What operation is
needed in the preceding sentence?
a) Addition
b) Subtraction
c) Division
d) Multiplication
11) Which of the following is NOT true when
multiplying decimals?
a) Count the total decimal places in the
factors
b) Multiply the numbers as if they are whole
numbers
c) Place the decimal point in the answer
d) The more decimal places, the smaller the
result
12) How do you treat decimal places when multiplying
decimals?
a) Count the total decimal places in the
factors
b) Ignore the decimal places
c) Round up the answer
d) Only consider the whole number part
13) If you are going to rewrite number 4 as a decimal,
how should it be written?
a) 4
b) 4.0
c) 4.00
d) 4.000
14) Which of the following is not included in the
steps in dividing decimals?
a) Multiply the divisor by a power of 10
b) Move the decimal point to the right
c) Move the decimal point in the dividend
d) Add zeros to the dividend as needed
15) How should we multiply whole numbers with
decimals?
a) Multiply as if they are whole numbers
b) Ignore the decimal and add it later
c) Place the decimal point at the end
d) Count the total decimal places
Test II. Direction. Study each item. Encircle the
letter of the correct answer.
16) Why should you convert fractions to their lowest
terms?
a) To make them look neat
b) To make them larger
c) To make calculations easier
d) To increase their value
17) Why is it necessary to know about reciprocals when
dividing fractions?
a) Reciprocals make fractions smaller
b) Reciprocals help with addition
c) Reciprocals simplify division
d) Reciprocals are rarely used
18) Four divided by ¾ can also be written as:
a) 3/4
b) 4/3
c) 1/4
d) 3/1
19) In solving problems with decimals, why do we
always start with identifying the problem?
a) To waste time
b) To avoid solving it
c) To understand the context
d) To complicate the process
20) When we say “reduce to the lowest term”, what does
it literally mean?
a) Make the fraction smaller
b) Simplify the fraction
c) Convert to a mixed number
d) Multiply the fraction
ANSWER KEY
Sure, here's the answer key for the test:
1. a) Add the numerators
2. b) Find a common denominator
3. b) numerators, denominators
4. c) The result can be larger than the original fractions
5. c) When multiplying decimals, count the total decimal places
6. a) Multiply the reciprocals
7. b) 2/1
8. c) To understand money and measurements
9. a) Yes
10. d) Multiplication
11. b) Multiply the numbers as if they are whole numbers
12. a) Count the total decimal places in the factors
13. b) 4.0
14. b) Move the decimal point to the right
15. d) Count the total decimal places
Test II:
16. c) To make calculations easier
17. c) Reciprocals simplify division
18. b) 4/3
19. c) To understand the context
20. b) Simplify the fraction
Comments
Post a Comment